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Abstract This study describes a two-step analogue statislimwnscaling method for daily temperature
and precipitation. The first step is an analogupraach: the fi” days most similar to the day to be
downscaled are selected. In the second step, ghaukgression analysis using the “n” most analsgo
days is performed for temperature, whereas foripitation the probability distribution of then®
analogous days is used to define the amount ofigita&tion. Verification of this method has been
carried out for the Spanish Iberian Peninsula &edBalearic Islands. Results show good performance
for temperature (BIAS close to 0.1°C and Mean AlsoErrors around 1.9°C); and an acceptable skill
for precipitation (reasonably low BIAS except intamn with a mean of -18%, Mean Absolute Error
lower than for a reference simulation, i.e. peesise, and a well-simulated probability distribution
according to two non-parametric tests of similgrity
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1 Introduction

The most powerful tools for constructing futurenwite projections are General
Circulation Models (GCMs) (Huebener et al. 2007CNBs currently operate at spatial
resolutions of around 200 km and this coarse résolumakes their climate

information unsuitable as input for impact modelen Storch 1994; Mearns et al.
1997). The latter are essential for designing adegt policies that seek to minimize
negative impacts of climate change and exploittp@sbnes. To solve this mismatch,
in the last decades considerable effort has beemfmuthe development of different
strategies in order to infer high-resolution infatmon from low-resolution variables,
i.e., ‘sensibly projecting the large-scale inforroaton the regional scale’ (von Storch
et al. 1993). All these strategies fall into theeall denomination of downscaling
techniques.

There are two main downscaling approaches (Mur@®@l1Fowler et al. 2007). In
so-called dynamical downscaling (Giorgi et al. 20Christensen et al. 2007), high-
resolution fields are obtained by nesting a Redi@iamate Model (RCM) into the
GCM (Giorgi et al. 1994; Jones et al. 1997), ongsa GCM with variable resolution
(stretching technique) (Déqué and Piedelievre 1983he statistical approach (Wilby
et al. 2004; Imbert and Benestad 2005), high-reésoiyredictands are obtained by
applying relationships identified in the observdiinate between these predictands
and large-scale predictors to GCM output.

Both approaches have advantages and disadvantages,both neccesitate
assumptions that cannot be verified for the clintiignge context (Giorgi et al. 2001).
They therefore contribute to the uncertainty cascéehding to the final climate
simulations. Several criteria can be used to assiste selection of the most suitable
approach depending on the application (Wilby e2@04).



The need to consider climate scenario uncertair{ieg to uncertainties in the
initial condition fields, in the forcing scenariag,the climate sensitivity of GCMs, in
the downscaling skill and so on) in a risk assesgrframework leads to the need for
probabilistic climate projections. In this contestatistical methods seem to provide a
good downscaling option. Their relatively minor deen terms of both GCM driving
data and computational resources are very reldgaptrocessing the growing number
of available GCM simulations. In addition, when wehigh resolution (local)
information is demanded, statistical methods catfopa better than dynamical ones
at least for the present day (Van der Linden anttiil 2009), due to the still coarse
resolution of current nested or stretched modeld (a the fact that RCMs do not use
local observations which implicitly capture locaktaorological characteristics). The
higher diagnostic capability of statistical methaghglied at the local scale is generally
accepted in the meteorological operational for@egstramework, where statistical
reinterpretation systems are the main tool for iolotg local information.

During the last few decades, long-term statistitsclonate have experienced
relatively small changes compared to inter-annaakbbility. This variability offers an
indirect way to assess the stability in a futurémate context of statistical
relationships used for downscaling. In this contéxb requirements can be identified
for statistical downscaling performance. The firsuirement is that performance
should be good at different time scales (dailyseeal, annual, decadal...) (Wilby and
Wigley 1997). The second requirement is that almtsif the predictor situations that
appear in the GCM future climate must be within #yplicability range of the
statistical relationships determined for the calilan period of the method.

In this study, a novel statistical downscaling noelthvill be described and verified.
According to the two requirements mentioned abowetification assesses the
performance of the method at different time scald®n the low-resolution input data
are extracted from an observed reference dataB&4& Reanalysis).

2 Study area and datasets
2.1 Study area

The area of study was Peninsular Spain and theaBaléslands. The predominant
climate in this area is Mediterranean, althougloeganic climate (in the north) and a
mountain climate (in the Sierra Nevada and Pyréneesong others, can be found.
(Capel-Molina 2000). There is a strong spatial a®hsonal contrast for both
temperature and precipitation. Daily temperatuffes, example can have extreme
values ranging from below -15°C, in high valleystle northeast in winter to over
44°C in the southwest and southeast of the pemingixtreme monthly precipitation
can have values ranging from 0 mm in July (in paftshe southeast peninsula), to
almost 1000 mm in northern areas, and even at timéke east of the peninsula,
where heavy precipitation is normally recorded davadays (Martin-Vide 2004).

2.2 Surface observations dataset

A group of stations belonging to the Spanish Maikmical Agency (AEMET) has

been used. Figure 1 shows the spatial distributfotine 5,273 precipitation (Fig. 1a)
and 1,866 temperature (Fig, 1b) stations used.y €mtions with at least 2,000 daily
records within the common period with ERA40 (19%®@) have been used.

2.3 Atmospheric dataset: ERA40 Re-Analysis



For verification of the methodology we have dowhsdathe ECMWF (European
Centre for Medium-Range Weather Forecasts) ERA-40e-ARalysis
(http://www.ecmwi.int/research/era/do/get/erg-4@r the 1958-2000 period. It has a
reduced Gaussian grid with approximately uniform5Ki@ spacing. In this
verification procedure, the original temporal amqditgal resolutions of ERA40 have
been “relaxed” to those used by one of the GCMBet@ownscaled (i.e., ECHAMS5,
Roeckner et al 2006). Thus only 00Z (and not 06ZZ and 18Z, also provided by
ERAA40) information has been used, with a spatsdltgion of 1.8° lat x 1.8° lon. The
geographical limits of the atmospheric window uaesl 31.500°N to 55.125°N latitude
and 27°W to 14,625°E longitude. This window hashbaefined trying to cover both
the geographic area under study as well as theowsuting areas which have a
meteorological influence on the peninsula. Likewis® interior sub-windows have
been defined (Figure 2) with different weights geed to the grid points depending
on their influence on the study area.

3 Methodology
3.1. General and theoretical Considerations

In our opinion, the development of a statisticalvdecaling methodology and the
selection of predictors should be carried out basedtheoretical considerations and
taking into account the final use of the methodglogour basic ideas should be
always kept in mind:

1. The stationarity problem: in a climate changenscio, the relationships between
predictors and predictands could change. Thus gedi should be physically linked
to the predictands, because these linkages wilthahge. Also, they should take into
account all the physical forcings of these predidta

2. The characteristics and limitations of the GCNtse methodologies to be
developed will be finally applied to GCM outputshéfefore, the predictors selected
should be well simulated by the GCMs. Moreover,tdraporal and spatial resolution
of the GCM should also be considered.

3. The statistical tool must be sufficiently “nandar” to handle the strongly non-
linear relationships that link predictors with mtstal surface weather predictands;

4. For climate change applications it is preferabl® to use any seasonal
stratification in the selection of predictors, @d$t in some circumstances: in a climate
change scenario, the climatic characteristics efclendar seasons may change. Thus
predictors / predictands relationships detected population of “present-day” days
belonging to a particular season, with specifindliic characteristics, would not be
applicable for future days if the climatic charaudtics of that season have changed.

According to these ideas, some general and theateinsiderations regarding the
selection of predictors have been identified:

According to idea 1: The selection of predictorewdtd be undertaken based on
theoretical considerations, rather than using aengdianalyses which could result in
non-physically based relationships that may beappiicable in the future due to the
stationarity problem. The predictors should be pajdorcings of the predictands, or
at least, should be physically linked to the predids. Furthermore, the identified
relationships between predictors and predictandaldibe those which best reflect the
physical links between them - again in order tousssso far as possible the
stationarity of these relationships. If these resuients are fulfilled, a good diagnostic
capability should be obtained at the daily scalbusT this daily skill should be
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analysed since it is required to ensure the staloh statistical relationships for the
future.

According to idea 2: The predictors should be fieltiables, rather than point
values, because the former are more reliably sitedlay GCMs.

According to idea 2: The predictors should be f&wosphere rather than
boundary layer variables because the former are metiably simulated by GCMs.

According to idea 2: The predictors should be \#es that are well simulated by
GCMs. The downscaling method presented here has dwegpted to be used for the
production of daily operational meteorological foasts. Many predictors are used in
the operational version because it has been shuoatrittey all improve the forecasting
skill. But some of them cannot be used in climateutations because, although they
have proven to be well simulated for the next feaysdby operational Numerical
Models, and therefore to be useful in meteoroldgicaeecasting, they are too
dependant on initial conditions to be well simutbltyy GCMs for the next decades.

According to idea 2: Working with coarser tempoaald / or spatial detail than
those provided by GCMs means that some informaionot used. Many of the
physical forcings of the predictands can only bptweed working at temporal and
spatial scales that are as small as possible. cthikl be especially relevant for the
simulation of some extreme precipitation events.tRese reasons, in our opinion, we
should work at daily and synoptic scales, becabeset are the scales at which the
GCMs provide information.

According to idea 3: The statistical method shaultlude strategies to take into
account the non-linearity of the relationships kestw many of the predictors and
predictands.

According to idea 4: We think that it is preferablet to make any seasonal
stratification in the definition of the predictgpsédictands relationships. According to
sensitivity analyses performed with the downscalmgthod presented here, seasonal
stratification does not improve the skill, hopeyubecause the relationships it uses
correctly reflect the physical links between préalis and predictands, i.e., they are
not just empirical relationships.

The statistical downscaling method has been deedl@md the predictors selected
taking into account the conceptual framework pressbabove.

The method estimates high-resolution surface melegical fields for a dayx”
(the problem day), in two steps: the first ste@nsanalogue technique (Zorita et al.
1993); in the second step, high-resolution surfadermation is estimated in a
different way for precipitation (using a probahilisapproach) and temperature (using
multiple linear regression).

Similar two step approaches have been applied ieratipnal forecasting
(Woodcock 1980; Balzer 1991). For climate changpliegtions, Enke and Spekat
(1997) adopted a similar technique, but where itisé $tep of analogue stratification is
replaced by stratification using a predefined d@tsyy of atmospheric patterns.
Analogue techniques can be considered as a sgemialof the clustering approach,
where a specific type is determined for each probtay, containing theé most
analogous days. This strategy greatly reduces #r@ahility within a predefined
cluster, which includes days with quite differentaspheric configurations. As a
result, analogue techniques generally offer highagnostic capability regarding high
resolution effects than do predefined clusterirtpstes.



3.2. First step: the analogue technique

In the first step, the most similar days to day®, identified on the basis of their low-
resolution atmospheric fields, are selected fronefarence dataset. The skill of the
method depends on the spread and quality of thespineric and surface reference
datasets and, in particular, on the measure useteymine the similarity between
days (Matulla et al, 2008). Consequently, accordinthe ideas mentioned above, the
similarity measure must contain diagnostic capgbiliegarding high-resolution
precipitation fields (i.e., low-resolution atmospicefields considered to be similar
according to the measure must be associated waiitasinigh-resolution precipitation
fields). Thus the similarity measure must assesslikeness of as many as possible
precipitation physical forcings (see idea 1) assed with the low resolution
atmospheric configurations of the days being coeghain addition to diagnostic
capability, the predictor variables of the measmest be reasonably well simulated
by GCMs (see idea 2).

Some statistical methods entail strongly automaiestedures to select the best
predictors and to adjust the optimum predictorslfiotand relationships (Hewitson
and Crane, 1994; Wilby and Wigley, 1997). This &, rhowever, easy for analogue
techniques for which calibration entails a labosiotask of testing different
combinations of predictors and similarity measurdsvertheless, this allows the
selection of predictors and similarity measureseuritieoretical considerations, with
the aim of capturing physical forcings between mteds and predictands in order to
guarantee the stationarity of the relationship® (gea 1, which we always keep in
mind).

The similarity measure between two days must beatas magnitude (to allow
ordering) and summarises the resemblance of thvesedays with regard to their
predictor fields.

Different algorithms which have traditionally bearsed to assess similarity
between fields were tested in the calibration pgec®earson correlation coefficients
and several Euclidean and pseudoeuclidean distar®iaslarity measures were
required to not only deal with the general pattarthe days being compared, but also
with the values of the corresponding individual pisiof both fields. For the latter
requirement, Pearson correlation coefficients parfaorse than Euclidean distances
and thus provide lower precipitation diagnosticatafities. The good performance of
Euclidean distances is supported by the analogthnigue literature (Martin et al.
1997; Kruizinga and Murphy 1983).

The similarity between two days is calculated byedaining (and standardising)
independently those days likeness with respectatth ef the four final predictors
fields. The unlikeness of daysandx; regarding each predictor field”, is calculated
as a pseudoeuclidean distance with:

Z(Rk - ij )ZV\{<
: i 1)
W,

wherePj is the value of the predictoP” of the dayx;, at the grid poink; W is the
weighting coefficient of thé grid point. AndN is the number of the atmospheric grid
points.

N
k=

Do (X X )=

OnceDp(X , %) has been calculated, it must be standardized sErelardization is
carried out by substitutin@s(x , ) by cenk, whichis the closest centile of the
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reference population of Euclidean distances amoadigor fields P, to the Dp(X;,

X)) value. The centile values are previously deteeajrindependently for eachr™
predictor field, over a reference population of entltan 3 000 000 values DBf. The
reference population is calculated by applying équal, with the sam&V values, to
randomly selected pairs of days. If the closestivdb Dp(x;, %) is cent;p, it means
that about theent;p % of the 3 000 00, values are lower thabp(x;, X). The use
of centile instead of the original distarigg allows consideration of dimensionless and
initially equally weighted variables for each predr “P” in the measure.

After the fourDp(x;, ) independent calculation and standardization (detetion
of the closest foucent;p), the final similarity (sim;) measure between daysandx;
is given by the inverse of a weighted average efcnt for the four ‘P” predictors

(Eq. 2).

sim, = (24: Wpcen'[jypj_ (2)

wherewp is the weighting coefficient of the predictor @i€lP”. The four predictors
are:

* spd1000geostrophic wind speed at 1000 hPa

e dirl00Q geostrophic wind direction at 1000 hPa

» spd500 geostrophic wind speed at 500 hPa

» dir500: geostrophic wind direction at 500 hPa

These predictors were selected based on theoretioalderations according to the
ideas mentioned in 3.1: they can be derived fromy @000 and Z500 (which are
reasonably well simulated by GCMs, Brands et al@0they are physically linked to
precipitation (1000 hPa wind is related to topogregl forcings of precipitation, and
Z1000 and Z500 to dynamical forcings, accordingt&quation, Holton 2004); they
capture most of the precipitation forcings (althougpnvective forcings are only
implicitly considered); and they are spatial fieldst grid-point values.

In addition to different algorithms and predictadgfferent combinations ofe and
Wk coefficients were also tested. The Wdefficients are required in order to consider
the greater influence on Iberian precipitation ahdvfeatures closer to the Peninsula.
W coefficients can be different for each prediclidre combination oN x W, found
to be more efficient is shown in Figure 2. The fauedictors were finally equally
weighted {p = 0.25).

As previously explained, only 00Z information wased (“relaxing” ERA40 time
resolution down to that offered by most GCMs). Werfgrmed several tests and
finally we used the average of 00Z and 24Z (i.€Z @f the next day) fields for
precipitation and maximum temperature, and 00Zd$elonly for minimum
temperature.

3.3. Second step
3.3.1. Temperature: multiple linear regression assé.

The estimation procedure for temperatures requaist selection of tha analogous
days described above £ 150 for temperature), further diagnosis usindtiple linear
regression. Although predictor/predictand relatiops determined in this second step
are linear, an important part of the non-lineaafythe links between free atmosphere
variables and surface temperatures is reduced with first step (analogue)
stratification, which selects the most similar dayish respect to precipitation and
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cloudiness (two of the variables which introduce stmnoon-linearity in the
relationships). Linear regression performs quitdl i@ the estimation of surface
maximum and minimum temperatures due to the neanalcstatistical distribution of
these variables. It is important to remember thhenvusing linear regression the
predictand quantity is bound to have essentiaklydaime statistical distribution as the
predictor(s) variable(s) (Burguer 1996). In thigasd, potential predictors should
possess close-to-normal distributions.

The multiple linear regression is performed indefgly for each surface point, and
uses forward and backward stepwise selection daigiggs. There are four potential
predictors:

1. 1000/500 hPa thickness above the surface station.

2. 1000/850 hPa thickness above the surface station.

3. A sinusoid function of the day of the year.

4. And a weighted average of the station mean daiyptratures of the ten

previous days.

Both thicknesses are used to include the strorgioeship between lower troposphere
and surface temperatures (a meteorological facttwg.sinusoid function of the day of
the year is used to consider the number of sunlighirs and its effect on the
warming/cooling of the surface air (a seasonalofi@dctAnd the ten days temperature
weighted average is used to account for the seinthl inertia influence (a soil
memory factor).

The non-linear influence of other important metéogeal factors, such as
cloudiness, precipitation and low troposphere wspeéed, is considered through the
first-step of analogue stratification. The regressis performed for a population of
days which present very similar precipitation, asdbsequently very similar
cloudiness, conditions.

For each station (and each problem day) the ragressperformed twice using as
predictands maximum and minimum temperatures. TWwosdiagnostic equations are
calculated (using the predictand and predictor emlof then analogous days
population) and applied to estimate both daily terajures for each station and
problem day.

3.3.2 Precipitation: probabilistic approach

Every problem dayx) hasn analoguesg) each with a certain similarityin;) (n=30
for precipitation). Each analogu&;) has an observed precipitatiom;X and an
estimated probability7§) according to Eq. 3.
sim(a ,x
77:", = n(LXI) (3)
> sim(g X )
k=1

Thus each problem dayX hasn pairs of o, 7], and apreliminary estimate of
precipitation ;) can be obtained by combining thepairs according to equation 4.

P = zpij TT; (4)
=

Since it is calculated as an average this preliiestimate greatly smooths the
extreme values of precipitation and underestimdgesiumber of dry days.



In order to overcome this limitation, we designembtaer approach. Consider the
pool containing alh analogs of every day in one particular momtkng analogues).
The aim of our approach is to generate surrogageigtation time series over this
month that follow a similar sample distribution the precipitation observed in that
pool of analogues.

In our approach, we first pool allanalogues for alin days in a particular month.
Each member of this pool is characterized by aipitation amountg; and a
probability 7. In a first step, the elements of the pool arekednby decreasing
precipitation p;). We then define groups within this pool, as falo The element
with the highest precipitation in the pool becorttes first element of the first group.
The first group is then filled by subsequently utihg elements of subsequent lower
ranks until the sum of their probabilities adds topunity. The element with the
following rank is then placed in the second groond the same procedure is repeated
until the second group is filled. In this manndredééments of the pool can be ascribed
to a group. It can be demonstrated that the nummibgroups defined in this manner is
equal to the number of dags A new set o precipitation valuesy,’, is obtained by
weight-averaging the precipitation of each elemiengroup h (weighted by their
relative probabilities), according to equation fie$e new valueg() are ranked as
well.

P = Zpkﬂ:k 5)

Kzm =1

Finally, the first guesg; obtained by equation 4 is replaced by the newevplu
that has the same rank @sso that the higheg,' is associated with the day;)(with
the highesf;; the second highegt with the day with the second highest. A simple
example of the whole procedure is presented inragipe.

Proceeding this way, the probability distributiointiee m new precipitation values
(pr) is similar to the probability distribution afxm values of precipitationg) - as
desired (see discussion in 5.2). This method allawsempirical distribution of rain
amounts for each day of the month to be construsfffibut assuming any a priori
hypothesis about the probability distribution otleanonth (or assuming a particular
associated analytical probability function suchlessgamma function).

3.4 Verification of the methodology

Verification of the methodology was carried outdmmparing simulated and observed
series for the three variables (maximum and minintemperature and precipitation).
Daily Mean Absolute Error (MAE, Stauffer and Seani®90) and BIAS (Yu et al.
2006) are used as error measures. For precipifati@en Ranked Probability Score
(RPS, Wilks, 2005) is used to compare both prelaninand final precipitation
estimates with two reference predictions: climaggl@and persistence. The Pearson
correlation is also used to compare mean simulatetl observed values as well as
95th percentiles for the three variables.

In addition, observed and simulated probabilityridhsition functions (PDF) of daily
precipitation are compared for each month using mao-parametric goodness-of-fit
tests: the Kolmogorov-Smirnov test witlootstraping(Marsaglia et al. 2003; Sekhon
2010), which has been used in earlier climaticissi¢Abaurrea and Asin 2005), and
the Anderson-Darling test (Scholz and Stephens/)198

All the statistical analyses were carried out udtjca free software environment for
statistical computing and graphics (R DevelopmemeTeam, 2010).
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4 Results
4.1 Simulation of precipitation

The similarity measure used in analogues selestias adjusted in order to seek the
highest predictive capability for precipitation. ugh the probabilistic prediction
obtained from the selected analogues provides gesdts on the daily timescale. For
example, categorizing the precipitation into thotsesses (<0.1 mm, between 0.1 and
10 mm, and greater than 10 mm), the average (fostations) annual RPS value
obtained is 0.08, that represents a Skill Sco®@ 46 compared to persistence and 0.23
compared to climatology. For summer, the RPS fawated precipitation is similar
to that for persistence due to the low number of days in summer (Fig. 3a). The
final precipitation estimate, obtained in the setetep of the method, also has a daily
MAE smaller than that for “climatology” and “perssice” (Fig. 3b). The average
relative bias is practically negligible in all seas, except autumn when it is around -
18% and even around -30% over the eastern peni(iSiglad).

The number of dry days is also correctly simulafBae average bias is less than
two days (4% of the total number of dry days).

The 95th percentile can be used as an indicatdrigif precipitation since it is
obtained from the upper tail of the distributiorhub we have analysed the seasonal
95th percentile of daily precipitation and estingatdhe correlation between the
simulated and observed seasonal 95th percentites geries (Fig. 5a). Winter is the
season best simulated, with correlations of ové Q. the southeast peninsula,
whereas summer gives correlations of less thafod Mediterranean areas.

4.2 Simulation of temperature

As regards the simulation of temperature, the Ergeverage bias is found for
maximum winter temperature, i.e., almost 0.2°Chwialues of 0.1°C or lower for
other seasons and for minimum temperature (FigTBg. daily mean absolute error
(MAE) is around 1.8°C for both maximum and minimt@mperature, although the
latter varies more between seasons with an avevege of 1.6°C in summer and
almost 1.9°C in winter.

The spatial distribution of the errors show tha BIAS for maximum temperature
depends on the season: in winter it is nearly adwaggative (around -0.2°C); in
autumn it is virtually zero; in spring slightly poge (+0.1°C) in inland areas and
somewhat negative on the coast, reaching -0.2%eigulf of Valencia (Fig. 7); and
in summer it is generally higher and positive imlaand in the southeast of the Iberian
Peninsula. For minimum temperature, the average ihisummer is slightly negative
on the east coast and in some areas of the sodthaath coast, and for the remaining
seasons very low, with the exception of the sowh@a autumn) and the northeast (in
winter).

The MAE for maximum temperature is spatially quitemogeneous and ranges
between 1.8 and 2.0°C. The areas with highest Mi&Erdand in the southeast and
north of Extremadura where it reaches up to 2.2°Gummer. As regards minimum
temperature, the southeast inland area is once digaiarea with the highest MAE,
also in summer - this time around 2°C. The remagingeographical areas range
between 1.6 and 2°C, although in winter the areth WIAE of 2°C has a wider
extension.



As regards the seasonal 95th percentile of dailyimmam and minimum
temperatures (Fig. 5b and 5c), the highest tenhpmoraelation is around 0.8 in
autumn and spring for maximum temperature and ad@un in winter for minimum
temperature. Summer shows a low correlation (h4heé eastern Peninsula for both
maximum and minimum temperatures.

5 Discussion
5.1 Advantages and limitations

The methodology presented in this study, as inrogiatistical approaches, shows
disadvantages compared to dynamic downscalinghigtprical observations of the
studied variables are needed; (2) they have pessdpatial or inter-variable

inconsistencies; and (3) there may be a possildelgm of non-stationarity in the

relationships between predictors and predictandscpkarly due to weak physical

linkages.

The main advantages of the statistical approachedven. The first is the low
computational cost, which allows the downscalingnainy GCM outputs and several
greenhouse gas emission scenarios in order toifuantertainties (Van der Linden
and Mitchell 2009). The second is that specificoinfation is provided for point
locations with observations, and in these obsesmatithe microclimatic features of
these points are implicit. This local detail isenednt as the same future climate may
bring changes with respect to the current climakéckv could be quite different for
points which are a few km apart. This suppositias been confirmed with the results
obtained when local future climate scenarios awdpeed using this methodology.
Dynamic approaches typically provide spatial resohs of up to 25 km, which are
still insufficient to resolve topography with endugdetail and to show differences in
the projected changes for points located closethege

Regarding this particular statistical approaclprégsents good verification results
that are consistent with other studies when corepas with other downscaling
methods are considered (Goodess et al 2011, Bairadt 2008Van der Linden and
Mitchell 2009).

In our opinion, these good verification results atae to some particular
characteristics of thisnethodology: (1) predictors selection is based leoitetical
considerations, trying to reflect the physical &Agks between predictors and
predictands, which to some extent reduces theostaity problem; (2) it operates at
the maximum spatial and temporal resolution offdogdGCMs; (3) it considers the
full range of data variability (we are not, for exale, working with principal
components); and (4) it performs linear analysish@npopulation of analogues, which
reduces to a large extent the non-linearity ofredationships between predictors and
predictands (see 3.3.1).

It should be mentioned that, though analogue matleodure to some extent spatial
and inter-variable consistency, the second stefoqmeed here could reduce this
consistency.

As regards limitations, poorer results have be@hlighted in the simulation of
precipitation in autumn in the Mediterranean ar@ag for this variable on a daily
timescale (although in general the monthly and aealsscales are well simulated).
This limitation may be associated with the insuéfit spatial and temporal resolution
used (i.e., that offered by GCMSs), as they canestlve atmospheric structures which
are small in size and/or have a short life cycleshsas the convective structures

10



responsible for heavy precipitations in Spain, esby in Mediterranean areas in
autumn.

5.2 Precipitation simulation

Regarding the methodology (see 3.3.2), the secteql fer precipitation includes a
pooling and ranking of thiexm precipitation amounts corresponding to each gafup
m problem days (witn analogous for each problem day). Proceeding tlag, we
obtain a probability distribution for then final precipitation values (according to
equation 5) which is more similar to the probapittistribution of thenxm values of
precipitation. To evaluate this, we used the Anae®arling test for the final
precipitation estimates compared with tiven amounts. The test gave a p-value for
each group o days of each station time-series, and all thegalyes were averaged
for each station. The final estimated precipitatias well as observations) passes the
Anderson-Darling test in almost all cases, withgmi§icant p-value >0.05, while the
preliminary estimates do not pass this test (FigpiBer panel).

We also performed the Anderson-Darling test for esalv simulations of
precipitation compared with observed precipitatidtesults show that the final
estimated precipitation is closer to observed pitation than both the precipitation of
the first analogue and the preliminary estimatg.(Bilower panel).

The use of linear analysis for the second stepedipitation estimation is a subject
of debate. For temperature, the second step cerddishultiple regression, where the
CDF shape of predictors is somewhat similar toG@d- shape of the predictand. In
the case of precipitation, for a suitable multipégyression we need to find some
predictors whose probability distribution has a iEm shape (Blrguer, 1996).
However, physically linked predictors (mainly maoist and instability) have very
different probability distributions compared to @gstation, and thus linear
relationships can not really be identified.

Although the preliminary precipitation estimatestasbed by averaging the
analogues precipitation amounts provide good resfitr mean values, they
underestimate both the number of dry days and é&aeyhrainfall amounts. Thus the
aim of the probabilistic approach is to obtain gy#ation time-series that properly
represent the characteristics of the precipitatagime.

Daily precipitation simulated by numerical modeéngrally has very high MAE in
comparison with other variables (Hamill 1999; MaRriand Ebert 2000), thus some
authors use verification methods such as RankebaBility Scores (Hersbach 2000;
Weigel et al. 2006). In this study, however, we éndacused on verification of daily
precipitation on rainy days, it is thus necessargdmpare the PDFs of observed and
simulated daily precipitation. In this respect, taan-parametric tests were performed,
the Kolmogorov-Smirnov test with laootstraptreatment (KS; Marsaglia et al. 2003,
Sekhon 2010), and the Anderson-Darling test (Scaontz Stephens 1987). These tests
showed that in general the distribution of simudapeecipitation is not significantly
different from that observed (p-value > 0.05). Tasults are similar for every month,
with slight advantages for winter months in comgamito summer (Fig. 9).

The simulated daily precipitation presents a suitstaBMAE and BIAS for autumn
in areas with a Mediterranean climate influencethwa clear underestimation of
precipitation (Fig. 3 and 4). This is probably dadhe difficulty found in the realistic
simulation of deep convection, which is typical tbe Mediterranean (Lazier et al.
2001; Herrmann 2008). This convection produces wetgnse precipitation due to
persistent convergences of humidity and to theogridphic characteristics of the
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eastern peninsular coast (Gibergans et al. 1998st@gnaret and Gil-Olcina 2006).
Given the synoptic resolution of the GCMs (in gaeharound 2 degrees), it is difficult
to capture with precision such mesoscale phenonteaavailability of higher spatial
resolutions would allow consideration of other pbgbkpredictors in order to improve
results — for example, in operational forecastimg ¢convergence of humidity is often
used (Jansa et al. 2000).

Future improvements of the methodology for preaioin would be desirable. The
inclusion of other physical forcings (humidity amstability) should be tested. The
effectiveness of this inclusion will probably belated to an increase in GCM
resolution

We have tested the inclusion of humidity as an tamtthl predictor for the second
step using different approaches, but so far vetifim results did not improve
significantly. In addition, GCMs currently have ptems simulating moisture (Hu et
al. 2005; John and Soden 2007), partly due to lpatial resolution (Raisanen 2007).
Therefore we decided not to include humidity in timal version of the methodology.
Nevertheless, we consider that there are physicks$ lbetween one day’s humidity
field and its synoptic configuration (related to taajectories, temperature, etc.).

5.3 Daily temperature and data accuracy

Initially, maximum and minimum temperatures werendiated from the ERA40
atmospheric configuration at 00Z. This gave lafgye&&E for maximum temperature
than for minimum (2.0°C versus 1.8°C). The reas@ensed to be that 00Z
information allows good simulation of minimum temaieire (which usually occurs
around 05Z in this area) but the use of 12Z infdromais more suitable for maximum
temperature (which usually occurs around 14Z). Timestemporal resolution of the
predictors is important in order to minimise errorsimulating temperature.

However, since for many climate models 127 infoioratis not available, we
decided to use the average of the 00Z and 24Z @OZext day) to simulate
maximum temperature. This reduced MAE to similduga as obtained for minimum
temperature, around 1.8 °C (Fig. 7).

The recording precision of temperature observatalae clearly affects the mean
absolute error of the simulation. If, for examglee MAE obtained averaging over all
the stations (many of which show precision of 19€)compared to the results
averaging over only those stations with good precif<0.5°C), the MAE can be
reduced by 3 to 5 tenths of a degree (Fig. 10).tlkisrcomparison, we have analysed
stations with at least 60% of the series with gpoetision (295 stations), and those
with at least 90% of the series with good precigmmly 22 stations).

5.4 Method of verification and temporal evolution

In order to achieve the effect of cross-validatithre methodology includes an “auto-
restriction” when simulating past climate: in thestf step, the 5 previous days and the
5 subsequent days of the problem day are excluded the group from which the
most analogous days have been selected. Howevernécessary to prove that the
methodology also allows for adequate simulatiora @fimatic period “training” on a
different period (a pure cross-validation schemamnfhere on referred to as “Cross”).
In this respect, Figure 11 shows that the “autdrisn” gives verification results
similar to those obtained when simulating halfte tata with the corresponding other
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half (Cross); the periods used for this test ar881P974 (period 1) and 1975-2000
(period 2).

Note that the “auto-restriction” method gives a MaBich is slightly lower than
for the Cross method, owing to the fact that thkeeci®n of analogues is more
effective the longer the “training” period used.

Another relevant aspect considered in Figure 11ihés capacity to adequately
simulate one period from another. That is to shig possible to simulate a warmer
and slightly drier period (1975-2000) despite tmagnon a relatively cold and wet
period (1958-1974), and vice-versa (Brunet et GD12 Lopez-Bustins et al. 2008).
Thus it is expected that the method described is gaper should be able to
adequately simulate anticipated climate changes.

Good performance in the simulation of climate etiolucan also be analysed using
the Pearson correlation of time series of seagmeaipitation and temperature. In this
respect, it has been estimated that the mediaelaton for seasonal precipitation is
R = 0.7 (Fig. 12), whereas for temperature it s ®8 (Fig. 13).

The area which shows most skilful simulation of ttesmporal evolution of

precipitation is the southwest peninsula, partidylan winter, with a correlation of R

> 0.9; this is probably due to the fact that thigiarof precipitation in this area is
largely frontal. In contrast, lower correlation® abtained in the southeast peninsula,
the Ebro Valley and the Balearic Islands, espgcialsummer (R < 0.3), owing to the
scarcity of precipitation (Fig. 12a). Figure 12mgils the observed and simulated time
series in winter and summer for a station with Raéd¢o the median of all the stations,
and with data spanning at least 30 years.

As regards the temporal simulation of temperatthre, spatial distribution of the
correlations is more homogeneous, especially imgpiThe seasons showing poorer
simulation are summer and winter in the southeadt southwest respectively, with
correlations lower than 0.6 (Fig. 13). Figure 13lows the observed and simulated
seasonal time series for a station with R equdahéomedian of all the stations, and
with at least 30 years of data.

It can also be seen that seasonal simulation oPHtle percentile of precipitation
and temperature gives a temporal correlation wibseovations (Fig. 6) which is
spatially coherent with that for the seasonal ayesgFig. 12 and 13).

6 Conclusions

This paper presents a two step statistical dowmgcahethodology which allows
good simulation of past climate on the Spanishrmra and the Balearic Islands on a
local scale, based on ERA40 reanalysis data. Trenraksolute error (MAE) for daily
precipitation is lower than for two reference siatidns (persistence and climatology),
whereas for minimum and maximum daily temperatlW&E is around 1.8°C —
however, MAE for temperature is between 3 and Sh&ewf °C lower if only those
stations showing good recording precision (<0.%@)considered.

The bias obtained was generally insignificant, @kxder autumn precipitation in
Mediterranean areas. The reason for this arises the difficulty in simulating deep
convection, which is typical of the Mediterraneawing to the spatial resolution used
(i.e., that offered by the GCMs) Despite this, EigFs of simulated daily precipitation
are not significantly different from observed, aast according to the Kolmogorov-
Smirnov (p-value = 0.4, wittbootstraping and Anderson-Darling (p-value = 0.3)
tests.
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Finally, the temporal evolution of climate is alseell simulated, both for
precipitation (with a correlation of about R = 0.Zhd for temperature (with a
correlation of about R = 0.8). It is also showrattlihe method is capable of
satisfactorily simulating the period 1975-2000 whexined on the period 1958-1974,
and vice-versa.
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Appendix

An example will help to understand the proposedhaetand its justification (see
point 3.3.2). To simplify, in this example=4, n=4, and all the analogous days will
have the same probability;=1/4. Table A.1 shows the supposed observed
precipitation ;) of each analogous dayy;§, and the preliminary precipitation
estimate (Eq. 4).

Within these 4 problem days together, there woeld Iprobability of one day with
precipitation over 50 mm of 25% (forn)x+ 25% (for %) + 50% (for %), so it is
expected that one day of those 4 has a precipitaver 50 mm. But no preliminary
precipitation estimate reaches that amount, dgenmothing in the average. Likewise,
the probability of no rain would be 50% (for)x 50% (for %) + 100% (for %), so it
is expected that two of those 4 days are dry, wtiike preliminary precipitation
estimate suggested only one, again due to averagthgmoothing.

To solve this problem, we pooled allmanaloguesnanalogues for each of ati
days in the month) to construct a sample distribytiand obtained the final
precipitation amount estimation from this joint patility distribution (Eq. 5). Sorting
the m-n observed precipitation amountg;), the m final precipitation amounts are
obtained by averaging each of tmegroups ofn sorted analogues. This way, one day
over 50 mm and two dry days are obtained, and theakprecipitation amounts are
assigned to each of the problem days accordindgheéa preliminary precipitation
amount estimates (see table A.2).

The final precipitation distribution is much morengar to the m-n analogue
observed precipitation distribution than the prahany precipitation distribution was.
And the extremes (high values and dry days) of that analogue distribution are
much better represented.
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Tables

Table A.1. Preliminary precipitation estimates (Eq. 4) usimg4 problem days and=4
analogous days

Problem day Anglogous Analogue | Analogue | Preliminary
ays probability | precipitation| precipitation
() (@) (75) (1) (p)
X1 Q11 0.25 0 13.75
ao 0.25 50
a3 0.25 0
A4 0.25 5
X2 1 0.25 0 16
S 0.25 0
3 0.25 4
4 0.25 60
X3 31 0.25 0 0
) 0.25 0
33 0.25 0
G4 0.25 0
Xa A1 0.25 70 36.25
S 0.25 60
Q3 0.25 10
Ay 0.25 5
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Table A.2. Final precipitation estimates (Eq. 5) using thken analogues of Table A.1, sorted

by analogue precipitatiof;).

Analogous | Analogue | Analogue Final Assigned to
days probability | precipitation| precipitation | problem day
(a) (75) (o) (Pr) (%)
au 0.25 70 60 X
=Y 0.25 60
Az 0.25 60
s 0.25 50
By 0.25 10 6 X
aus 0.25 5
Qs 0.25 5
B 0.25 4
an 0.25 0 0 X
A 0.25 0
a1 0.25 0
B0 0.25 0
a1 0.25 0 0 X
g 0.25 0
B 0.25 0
84 0.25 0
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Figure captions
Fig. 1 Meteorological stations used for this stugyprecipitation stations, b) temperature stations
Fig. 2 Atmospheric windows and grid-point weightiiog each atmospheric level.

Fig. 3 Box plots of RPS and MAE for daily precipite, for all stations, compared with two reference
simulations: climatology and persistence.

Fig. 4 Spatial distribution of BIAS for precipitati: a) absolute BIAS, b) relative BIAS.

Fig. 5 Spatial distribution of the Pearson corietafor simulated and observed seasond) @&rcentile
time series, for: a) daily precipitation, b) dailjaximum temperature, and c) daily minimum
temperature.

Fig. 6 Box plots for BIAS and daily MAE for maximuand minimum temperature for all stations.

Fig. 7 Spatial distribution of BIAS and daily MABIf maximum and minimum temperature: a) BIAS
of maximum temperature, b) BIAS of minimum temperaf c) MAE of maximum temperature, d)
MAE of minimum temperature.

Fig. 8 a) Box plots of mean P-values, for all sta$, for the Anderson-Darling test on the
indistinguishability of the simulateh Xn values of rainfall (for each oh= 30 problem days, with =

30 analogues for each one), compared tarthebserved values, preliminary and final estimateldies
of precipitation. b) The same test for comparingestied values with several simulations: value ef th
first analogue, preliminary and final precipitatiestimates. For each station, the mean P-valueeis t
average for every calculated P-value for emetiays period.

Fig. 9 Box plot of P-values, for all stations, fvo non-parametric tests of the indistinguishayilit
between the observed and simulated probabilityidigton functions, for precipitation amounts ontwe
days: a) Kolmogorov-Smirnov test witlootstrapng, and b) Anderson-Darling test.

Fig. 10 Box plots of monthly MAE according to datgording precision: a) MAE for daily maximum
temperature for all stations (black) and for theéth intermediate precision (at least 60% of théada
with precision higher than 0.5°C) (blue); b) Thensaas a) but for better precision (at least 90%hef
data with precision higher than 0.5°C (green); ) d) The same as a) and b) respectively, but for
minimum temperature.

Fig. 11 Box plots of the comparison between BIAS &AE according to two verification methods
(original and Cross), and two periods (Period 1 Bedod 2), for all stations: a) BIAS of precipitat;

b) BIAS of maximum temperature; c¢) MAE of monthpyecipitation; d) MAE of daily maximum
temperature.

Fig. 12 Correlation of simulated and observed tisgries of seasonal precipitation: a) Spatial
distribution of the correlation for the four seasph) seasonal precipitation (winter and summengti
series for a station with correlation equal to thedian (R = 0.7; station is Requejada Reservaoir,
AEMET code 2232),.

Fig. 13 Correlation of simulated and observed tdmges for seasonal maximum temperature: a) spatial
distribution of the correlation for the 4 seasors); seasonal maximum temperature time series for a
station with a correlation equal to the median (R &; station is Almazan, AEMET code 2045
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Figure captions

Fig. 1 Meteorological stations used for this stugyprecipitation stations, b) temperature stations
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Fig. 8 a) Box plots of mean P-values, for all sta$, for the Anderson-Darling test on the

indistinguishability of the simulateh.xn values of rainfall (for each @h = 30 problem days, with =

30 analogues for each one), compared tarthebserved values, preliminary and final estimateldies
of precipitation. b) The same test for comparingesbied values with several simulations: value ef th
first analogue, preliminary and final precipitatiestimates. For each station, the mean P-valugeis t
average for every calculated P-value for emetiays period.

29



a) b)

2 - 4 - = = = = T = = = - =
© : P ©
o 7 1 | T o 7
@ | P o | : |
(=] (=]
@ @
3 — 3
m m
E E
& [ &
< | <
(=] — (=]
N7 N7
(=] _:_ (=]
oo+ 0.05
S A S S S S S A S S S S
(=] (=]
T T T T T T T T T T T T T T T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12
Month Month

Fig. 9 Box plot of P-values, for all stations, fvo non-parametric tests of the indistinguishayilit
between the observed and simulated probabilityidigton functions, for precipitation amounts ontwe
days: a) Kolmogorov-Smirnov test witlootstrapng, and b) Anderson-Darling test.
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Fig. 10 Box plots of monthly MAE according to datcording precision: a) MAE for daily maximum
temperature for all stations (black) and for thagth intermediate precision (at least 60% of théada
with precision higher than 0.5°C) (blue); b) Thensaas a) but for better precision (at least 90%hef

data with precision higher than 0.5°C (green); ) d) The same as a) and b) respectively, but for
minimum temperature.
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Fig. 11 Box plots of the comparison between BIAS &AE according to two verification methods
(original and Cross), and two periods (Period 1 Bedod 2), for all stations: a) BIAS of precipitat;

b) BIAS of maximum temperature;

temperature.

¢) MAE of monthpyecipitation; d) MAE of daily maximum
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Fig. 12 Correlation of simulated and observed tisgries of seasonal precipitation: a) Spatial
distribution of the correlation for the four seasph) seasonal precipitation (winter and summengti
series for a station with correlation equal to thedian (R = 0.7; station is Requejada Reservoir,
AEMET code 2232),.
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Fig. 13 Correlation of simulated and observed timges for seasonal maximum temperature: a) spatial
distribution of the correlation for the 4 seasons; seasonal maximum temperature time series for a
station with a correlation equal to the median (R &; station is Almazan, AEMET code 2045
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