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Abstract This study describes a two-step analogue statistical downscaling method for daily temperature 
and precipitation. The first step is an analogue approach: the “n” days most similar to the day to be 
downscaled are selected. In the second step, a multiple regression analysis using the “n” most analogous 
days is performed for temperature, whereas for precipitation the probability distribution of the “n” 
analogous days is used to define the amount of precipitation. Verification of this method has been 
carried out for the Spanish Iberian Peninsula and the Balearic Islands. Results show good performance 
for temperature (BIAS close to 0.1ºC and Mean Absolute Errors around 1.9ºC); and an acceptable skill 
for precipitation (reasonably low BIAS except in autumn with a mean of -18%, Mean Absolute Error 
lower than for a reference simulation, i.e. persistence, and a well-simulated probability distribution 
according to two non-parametric tests of similarity). 
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1 Introduction 

The most powerful tools for constructing future climate projections are General 
Circulation Models (GCMs) (Huebener et al. 2007). GCMs currently operate at spatial 
resolutions of around 200 km and this coarse resolution makes their climate 
information unsuitable as input for impact models (von Storch 1994; Mearns et al. 
1997). The latter are essential for designing adaptation policies that seek to minimize 
negative impacts of climate change and exploit positive ones. To solve this mismatch, 
in the last decades considerable effort has been put into the development of different 
strategies in order to infer high-resolution information from low-resolution variables, 
i.e., ‘sensibly projecting the large-scale information on the regional scale’ (von Storch 
et al. 1993). All these strategies fall into the overall denomination of downscaling 
techniques. 

There are two main downscaling approaches (Murphy 1999; Fowler et al. 2007). In 
so-called dynamical downscaling (Giorgi et al. 2001; Christensen et al. 2007), high-
resolution fields are obtained by nesting a Regional Climate Model (RCM) into the 
GCM (Giorgi et al. 1994; Jones et al. 1997), or using a GCM with variable resolution 
(stretching technique) (Déqué and Piedelievre 1995). In the statistical approach (Wilby 
et al. 2004; Imbert and Benestad 2005), high-resolution predictands are obtained by  
applying relationships identified in the observed climate between these predictands 
and large-scale predictors to GCM output.  

Both approaches have advantages and disadvantages, and both neccesitate 
assumptions that cannot be verified for the climate change context (Giorgi et al. 2001). 
They therefore contribute to the uncertainty cascade leading to the final climate 
simulations. Several criteria can be used to assist in the selection of the most suitable 
approach depending on the application (Wilby et al. 2004).  
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The need to consider climate scenario uncertainties (due to uncertainties in the 
initial condition fields, in the forcing scenarios, in the climate sensitivity of GCMs, in 
the downscaling skill and so on) in a risk assessment framework leads to the need for 
probabilistic climate projections. In this context, statistical methods seem to provide a 
good downscaling option. Their relatively minor needs in terms of both GCM driving 
data and computational resources are very relevant for processing the growing number 
of available GCM simulations. In addition, when very high resolution (local) 
information is demanded, statistical methods can perform better than dynamical ones 
at least for the present day (Van der Linden and Mitchell 2009), due to the still coarse 
resolution of current nested or stretched models (and to the fact that RCMs do not use 
local observations which implicitly capture local meteorological characteristics). The 
higher diagnostic capability of statistical methods applied at the local scale is generally 
accepted in the meteorological operational forecasting framework, where statistical 
reinterpretation systems are the main tool for obtaining local information.  

During the last few decades, long-term statistics of climate have experienced 
relatively small changes compared to inter-annual variability. This variability offers an 
indirect way to assess the stability in a future climate context of statistical 
relationships used for downscaling. In this context, two requirements can be identified 
for statistical downscaling performance. The first requirement is that performance 
should be good at different time scales (daily, seasonal, annual, decadal...) (Wilby and 
Wigley 1997). The second requirement is that almost all of the predictor situations that 
appear in the GCM future climate must be within the applicability range of the 
statistical relationships determined for the calibration period of the method. 

In this study, a novel statistical downscaling method will be described and verified. 
According to the two requirements mentioned above, verification assesses the 
performance of the method at different time scales, when the low-resolution input data 
are extracted from an observed reference dataset (ERA40 Reanalysis). 

 

2 Study area and datasets 

2.1 Study area 

The area of study was Peninsular Spain and the Balearic Islands. The predominant 
climate in this area is Mediterranean, although an oceanic climate (in the north) and a 
mountain climate (in the Sierra Nevada and Pyrenees), among others, can be found. 
(Capel-Molina 2000). There is a strong spatial and seasonal contrast for both 
temperature and precipitation. Daily temperatures, for example can have extreme 
values ranging from below -15ºC, in high valleys in the northeast in winter to over 
44ºC in the southwest and southeast of the peninsula. Extreme monthly precipitation 
can have values ranging from 0 mm in July (in parts of the southeast peninsula), to 
almost 1000 mm in northern areas, and even at times in the east of the peninsula, 
where heavy precipitation is normally recorded on a few days (Martín-Vide 2004). 

 

2.2 Surface observations dataset 

A group of stations belonging to the Spanish Meteorological Agency (AEMET) has 
been used. Figure 1 shows the spatial distribution of the 5,273 precipitation (Fig. 1a) 
and 1,866 temperature (Fig, 1b) stations used.  Only stations with at least 2,000 daily 
records within the common period with ERA40 (1958-2000) have been used.   

 

2.3 Atmospheric dataset: ERA40 Re-Analysis  
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For verification of the methodology we have downscaled the ECMWF (European 
Centre for Medium-Range Weather Forecasts) ERA-40 Re-Analysis 
(http://www.ecmwf.int/research/era/do/get/era-40) for the 1958-2000 period. It has a 
reduced Gaussian grid with approximately uniform 125km spacing.  In this 
verification procedure, the original temporal and spatial resolutions of ERA40 have 
been “relaxed” to those used by one of the GCMs to be downscaled (i.e., ECHAM5, 
Roeckner et al 2006). Thus only 00Z (and not 06Z, 12Z and 18Z, also provided by 
ERA40) information has been used, with a spatial resolution of 1.8º lat x 1.8º lon. The 
geographical limits of the atmospheric window used are 31.500ºN to 55.125ºN latitude 
and 27ºW to 14,625ºE longitude. This window has been defined trying to cover both 
the geographic area under study as well as the surrounding areas which have a 
meteorological influence on the peninsula. Likewise, two interior sub-windows have 
been defined (Figure 2) with different weights assigned to the grid points depending 
on their influence on the study area. 

 

3 Methodology 

3.1. General and theoretical Considerations 

In our opinion, the development of a statistical downscaling methodology and the 
selection of predictors should be carried out based on  theoretical considerations and 
taking into account the final use of the methodology. Four basic ideas should be 
always kept in mind: 

1. The stationarity problem: in a climate change scenario, the relationships between 
predictors and predictands could change. Thus predictors should be physically linked 
to the predictands, because these linkages will not change. Also, they should take into 
account all the physical forcings of these predictands. 

2. The characteristics and limitations of the GCMs: the methodologies to be 
developed will be finally applied to GCM outputs. Therefore, the predictors selected 
should be well simulated by the GCMs. Moreover, the temporal and spatial resolution 
of the GCM should also be considered. 

3. The statistical tool must be sufficiently “non-linear” to handle the strongly non-
linear relationships that link predictors with most local surface weather predictands; 

4. For climate change applications it is preferable not to use any seasonal 
stratification in the selection of predictors, at least in some circumstances: in a climate 
change scenario, the climatic characteristics of the calendar seasons may change. Thus 
predictors / predictands relationships detected in a population of “present-day” days 
belonging to a particular season, with specific climatic characteristics, would not be 
applicable for future days if the climatic characteristics of that season have changed. 

According to these ideas, some general and theoretical considerations regarding the 
selection of predictors have been identified: 

According to idea 1: The selection of predictors should be undertaken based on 
theoretical considerations, rather than using empirical analyses which could result in 
non-physically based relationships that may be not applicable in the future due to the 
stationarity problem. The predictors should be physical forcings of the predictands, or 
at least, should be physically linked to the predictands. Furthermore, the identified 
relationships between predictors and predictands should be those which best reflect the 
physical links between them - again in order to assure so far as possible the 
stationarity of these relationships. If these requirements are fulfilled, a good diagnostic 
capability should be obtained at the daily scale. Thus this daily skill should be 
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analysed since it is required to ensure the stability of statistical relationships for the 
future. 

According to idea 2: The predictors should be field variables, rather than point 
values, because the former are more reliably simulated by GCMs. 

According to idea 2: The predictors should be free-atmosphere rather than 
boundary layer variables because the former are more reliably simulated by GCMs. 

According to idea 2: The predictors should be variables that are well simulated by 
GCMs. The downscaling method presented here has been adapted to be used for the 
production of daily operational meteorological forecasts. Many predictors are used in 
the operational version because it has been shown that they all improve the forecasting 
skill. But some of them cannot be used in climate simulations because, although they 
have proven to be well simulated for the next few days by operational Numerical 
Models, and therefore to be useful in meteorological forecasting, they are too 
dependant on initial conditions to be well simulated by GCMs for the next decades. 

According to idea 2: Working with coarser temporal and / or spatial detail than 
those provided by GCMs means that some information is not used. Many of the 
physical forcings of the predictands can only be captured working at temporal and 
spatial scales that are as small as possible. This could be especially relevant for the 
simulation of some extreme precipitation events. For these reasons, in our opinion, we 
should work at daily and synoptic scales, because these are the scales at which the 
GCMs provide information. 

According to idea 3: The statistical method should include strategies to take into 
account the non-linearity of the relationships between many of the predictors and 
predictands. 

According to idea 4: We think that it is preferable not to make any seasonal 
stratification in the definition of the predictors/predictands relationships. According to 
sensitivity analyses performed with the downscaling method presented here, seasonal 
stratification does not improve the skill, hopefully because the relationships it uses 
correctly reflect the physical links between predictors and predictands, i.e., they are 
not just empirical relationships. 

The statistical downscaling method has been developed and the predictors selected  
taking into account the conceptual framework presented above.  

The method estimates high-resolution surface meteorological fields for a day “x” 
(the problem day), in two steps: the first step is an analogue technique (Zorita et al. 
1993); in the second step, high-resolution surface information is estimated in a 
different way for precipitation (using a probabilistic approach) and temperature (using 
multiple linear regression).  

Similar two step approaches have been applied in operational forecasting 
(Woodcock 1980; Balzer 1991). For climate change applications, Enke and Spekat 
(1997) adopted a similar technique, but where the first step of analogue stratification is 
replaced by stratification using a predefined clustering of atmospheric patterns. 
Analogue techniques can be considered as a special form of the clustering approach, 
where a specific type is determined for each problem day, containing the n most 
analogous days. This strategy greatly reduces the variability within a predefined 
cluster, which includes days with quite different atmospheric configurations. As a 
result, analogue techniques generally offer higher diagnostic capability regarding high 
resolution effects than do predefined clustering schemes. 
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3.2. First step: the analogue technique 

In the first step, the n most similar days to day “x”, identified on the basis of their low-
resolution atmospheric fields, are selected from a reference dataset. The skill of the 
method depends on the spread and quality of the atmospheric and surface reference 
datasets and, in particular, on the measure used to determine the similarity between 
days (Matulla et al, 2008). Consequently, according to the ideas mentioned above, the 
similarity measure must contain diagnostic capability regarding high-resolution 
precipitation fields (i.e., low-resolution atmospheric fields considered to be similar 
according to the measure must be associated with similar high-resolution precipitation 
fields). Thus the similarity measure must assess the likeness of as many as possible 
precipitation physical forcings (see idea 1) associated with the low resolution 
atmospheric configurations of the days being compared. In addition to diagnostic 
capability, the predictor variables of the measure must be reasonably well simulated 
by GCMs (see idea 2). 

Some statistical methods entail strongly automated procedures to select the best 
predictors and to adjust the optimum predictors/predictand relationships (Hewitson 
and Crane, 1994; Wilby and Wigley, 1997). This is not, however, easy for analogue 
techniques for which calibration entails a laborious task of testing different 
combinations of predictors and similarity measures. Nevertheless, this allows the 
selection of predictors and similarity measures under theoretical considerations, with 
the aim of capturing physical forcings between predictors and predictands in order to 
guarantee the stationarity of the relationships (see idea 1, which we always keep in 
mind). 

The similarity measure between two days must be a scalar magnitude (to allow 
ordering) and summarises the resemblance of these two days with regard to their 
predictor fields. 

Different algorithms which have traditionally been used to assess similarity 
between fields were tested in the calibration process: Pearson correlation coefficients 
and several Euclidean and pseudoeuclidean distances. Similarity measures were 
required to not only deal with the general pattern of the days being compared, but also 
with the values of the corresponding individual points of both fields. For the latter 
requirement, Pearson correlation coefficients perform worse than Euclidean distances 
and thus provide lower precipitation diagnostic capabilities. The good performance of 
Euclidean distances is supported by the analogue technique literature (Martin et al. 
1997; Kruizinga and Murphy 1983). 

The similarity between two days is calculated by determining (and standardising) 
independently those days likeness with respect to each of the four final predictors 
fields. The unlikeness of days xi and xj regarding each predictor field “P”, is calculated 
as a pseudoeuclidean distance with: 
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where Pik is the value of the predictor “P” of the day xi, at the grid point k; Wk is the 
weighting coefficient of the k grid point. And N is the number of the atmospheric grid 
points. 

Once DP(xi , xj) has been calculated, it must be standardized. The standardization is 
carried out by substituting DP(xi , xj) by centP, which is the closest centile of the 
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reference population of Euclidean distances among predictor fields “P”, to the DP(xi, 
xj) value. The centile values are previously determined, independently for each "P" 
predictor field, over a reference population of more than 3 000 000 values of DP. The 
reference population is calculated by applying equation 1, with the same Wk values, to 
randomly selected pairs of days. If the closest value to DP(xi, xj) is centi,j,P, it means 
that about the centi,j,P  % of the 3 000 000 DP values are lower than DP(xi, xj). The use 
of centile instead of the original distance DP allows consideration of dimensionless and 
initially equally weighted variables for each predictor “P” in the measure. 

After the four DP(xi, xj) independent calculation and standardization (determination 
of the closest four centi,j,P), the final similarity (simi j) measure between days xi and xj 
is given by the inverse of a weighted average of the centP for the four “P”  predictors  
(Eq. 2). 
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where wP is the weighting coefficient of the predictor field “P”. The four predictors 
are: 

• spd1000: geostrophic wind speed at 1000 hPa  
• dir1000: geostrophic wind direction at 1000 hPa  
• spd500: geostrophic wind speed at 500 hPa  
• dir500: geostrophic wind direction at 500 hPa  

These predictors were selected based on theoretical considerations according to the 
ideas mentioned in 3.1: they can be derived from only Z1000 and Z500 (which are 
reasonably well simulated by GCMs, Brands et al, 2010); they are physically linked to 
precipitation (1000 hPa wind is related to topographical forcings of precipitation, and 
Z1000 and Z500 to dynamical forcings, according to ω Equation, Holton 2004); they 
capture most of the precipitation forcings (although convective forcings are only 
implicitly considered); and they are spatial fields, not grid-point values. 

In addition to different algorithms and predictors, different combinations of wP and 
Wk coefficients were also tested. The Wk coefficients are required in order to consider 
the greater influence on Iberian precipitation of wind features closer to the Peninsula. 
Wk coefficients can be different for each predictor. The combination of N × Wk, found 
to be more efficient is shown in Figure 2. The four predictors were finally equally 
weighted (wP = 0.25). 

As previously explained, only 00Z information was used (“relaxing” ERA40 time 
resolution down to that offered by most GCMs). We performed several tests and 
finally we used the average of 00Z and 24Z (i.e., 00Z of the next day) fields for 
precipitation and maximum temperature, and 00Z fields only for minimum 
temperature. 

 

3.3. Second step  

3.3.1. Temperature: multiple linear regression analysis. 

The estimation procedure for temperatures requires, after selection of the n analogous 
days described above (n = 150 for temperature), further diagnosis using multiple linear 
regression. Although predictor/predictand relationships determined in this second step 
are linear, an important part of the non-linearity of the links between free atmosphere 
variables and surface temperatures is reduced with the first step (analogue) 
stratification, which selects the most similar days with respect to precipitation and 
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cloudiness (two of the variables which introduce most non-linearity in the 
relationships). Linear regression performs quite well for the estimation of surface 
maximum and minimum temperatures due to the near-normal statistical distribution of 
these variables. It is important to remember that when using linear regression the 
predictand quantity is bound to have essentially the same statistical distribution as the 
predictor(s) variable(s) (Bürguer 1996). In this regard, potential predictors should 
possess close-to-normal distributions. 

The multiple linear regression is performed independently for each surface point, and 
uses forward and backward stepwise selection of predictors. There are four potential 
predictors: 

1. 1000/500 hPa thickness above the surface station. 
2. 1000/850 hPa thickness above the surface station. 
3. A sinusoid function of the day of the year. 
4. And a weighted average of the station mean daily temperatures of the ten 

previous days. 

Both thicknesses are used to include the strong relationship between lower troposphere 
and surface temperatures (a meteorological factor). The sinusoid function of the day of 
the year is used to consider the number of sunlight hours and its effect on the 
warming/cooling of the surface air (a seasonal factor). And the ten days temperature 
weighted average is used to account for the soil thermal inertia influence (a soil 
memory factor). 

The non-linear influence of other important meteorological factors, such as 
cloudiness, precipitation and low troposphere wind speed, is considered through the 
first-step of analogue stratification. The regression is performed for a population of n 
days which present very similar precipitation, and subsequently very similar 
cloudiness, conditions.  

For each station (and each problem day) the regression is performed twice using as 
predictands maximum and minimum temperatures. Thus two diagnostic equations are 
calculated (using the predictand and predictor values of the n analogous days 
population) and applied to estimate both daily temperatures for each station and 
problem day.  

 

3.3.2 Precipitation: probabilistic approach 

Every problem day (xi) has n analogues (aij) each with a certain similarity (simij) (n=30 
for precipitation). Each analogue (aij) has an observed precipitation (ρij) and an 
estimated probability (πij) according to Eq. 3.  
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Thus each problem day (xi) has n pairs of [ρij, πij], and a preliminary estimate of 
precipitation (pi) can be obtained by combining the n pairs according to equation 4. 

 ∑
n
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   (4) 

Since it is calculated as an average this preliminary estimate greatly smooths the 
extreme values of precipitation and underestimates the number of dry days. 
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In order to overcome this limitation, we designed another approach. Consider the 
pool containing all n analogs of every day in one particular month (n×m analogues). 
The aim of our approach is to generate surrogate precipitation time series over this 
month that follow a similar sample distribution as the precipitation observed in that  
pool of analogues.  

In our approach, we first pool all n analogues for all m days in a particular month. 
Each member of this pool is characterized by a precipitation amount ρij and a 
probability πij. In a first step, the elements of the pool are ranked by decreasing 
precipitation (ρij). We then define groups within this pool, as follows. The element 
with the highest precipitation in the pool becomes the first element of the first group. 
The first group is then filled by subsequently including elements of subsequent lower 
ranks until the sum of their probabilities adds up to unity. The element with the 
following rank is then placed in the second group and the same procedure is repeated 
until the second group is filled. In this manner all elements of the pool can be ascribed 
to a group. It can be demonstrated that the number of groups defined in this manner is 
equal to the number of days m. A new set of m precipitation values, ph’, is obtained by  
weight-averaging the precipitation of each element in group h (weighted by their 
relative probabilities), according to equation 5. These new values (ph’) are ranked as 
well.  

 ∑
1=
πρ='p

kΣπ|k

kkh   (5) 

Finally, the first guess pi obtained by equation 4 is replaced by the new value ph’ 
that has the same rank as pi, so that the highest ph' is associated with the day (xi) with 
the highest pi; the second highest ph' with the day with the second highest. A simple 
example of the whole procedure is presented in appendix A. 

Proceeding this way, the probability distribution of the m new precipitation values 
(ph’) is similar to the probability distribution of n×m values of precipitation (ρk) - as 
desired (see discussion in 5.2). This method allows an empirical distribution of rain 
amounts for each day of the month to be constructed without assuming any a priori 
hypothesis about the probability distribution of each month (or assuming a particular 
associated analytical probability function such as the gamma function). 

 

3.4 Verification of the methodology 

Verification of the methodology was carried out by comparing simulated and observed 
series for the three variables (maximum and minimum temperature and precipitation). 
Daily Mean Absolute Error (MAE, Stauffer and Seaman 1990) and BIAS (Yu et al. 
2006) are used as error measures. For precipitation, the Ranked Probability Score 
(RPS, Wilks, 2005) is used to compare both preliminary and final precipitation 
estimates with two reference predictions: climatology and persistence. The Pearson 
correlation is also used to compare mean simulated and observed values as well as 
95th percentiles for the three variables.  

In addition, observed and simulated probability distribution functions (PDF) of daily 
precipitation are compared for each month using two non-parametric goodness-of-fit 
tests: the Kolmogorov-Smirnov test with bootstraping (Marsaglia et al. 2003; Sekhon 
2010), which has been used in earlier climatic studies (Abaurrea and Asín 2005), and 
the Anderson-Darling test (Scholz and Stephens, 1987). 

All the statistical analyses were carried out using R, a free software environment for 
statistical computing and graphics (R Development Core Team, 2010). 
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4 Results 

4.1 Simulation of precipitation 

The similarity measure used in analogues selection was adjusted in order to seek the 
highest predictive capability for precipitation. Thus the probabilistic prediction 
obtained from the selected analogues provides good results on the daily timescale. For 
example, categorizing the precipitation into three classes (<0.1 mm, between 0.1 and 
10 mm, and greater than 10 mm), the average (for all stations) annual RPS value 
obtained is 0.08, that represents a Skill Score of 0.46 compared to persistence and 0.23 
compared to climatology. For summer, the RPS for simulated precipitation is similar 
to that for persistence due to the low number of rain days in summer (Fig. 3a). The 
final precipitation estimate, obtained in the second step of the method, also has a daily 
MAE smaller than that for “climatology” and “persistence” (Fig. 3b). The average 
relative bias is practically negligible in all seasons, except autumn when it is around -
18% and even around -30% over the eastern peninsula (Fig. 4). 

The number of dry days is also correctly simulated. The average bias is less than 
two days (4% of the total number of dry days).  

The 95th percentile can be used as an indicator of high precipitation since it is 
obtained from the upper tail of the distribution. Thus we have analysed the seasonal 
95th percentile of daily precipitation and estimated the correlation between the 
simulated and observed seasonal 95th percentiles time series (Fig. 5a). Winter is the 
season best simulated, with correlations of over 0.8 in the southeast peninsula, 
whereas summer gives correlations of less than 0.4 for Mediterranean areas.  

 

4.2 Simulation of temperature 

As regards the simulation of temperature, the largest average bias is found for  
maximum winter temperature, i.e., almost 0.2ºC, with values of 0.1ºC or lower for 
other seasons and for minimum temperature (Fig. 6). The daily mean absolute error 
(MAE) is around 1.8ºC for both maximum and minimum temperature, although the 
latter varies more between seasons with an average MAE of 1.6ºC in summer and 
almost 1.9ºC in winter.  

The spatial distribution of the errors show that the BIAS for maximum temperature 
depends on the season: in winter it is nearly always negative (around -0.2ºC); in 
autumn it is virtually zero; in spring slightly positive (+0.1ºC) in inland areas and 
somewhat negative on the coast, reaching -0.2ºC in the gulf of Valencia (Fig. 7); and 
in summer it is generally higher and positive inland and in the southeast of the Iberian 
Peninsula. For minimum temperature, the average bias in summer is slightly negative 
on the east coast and in some areas of the south and north coast, and for the remaining 
seasons very low, with the exception of the southeast (in autumn) and the northeast (in 
winter).  

The MAE for maximum temperature is spatially quite homogeneous and ranges 
between 1.8 and 2.0ºC. The areas with highest MAE are inland in the southeast and 
north of Extremadura where it reaches up to 2.2ºC in summer. As regards minimum 
temperature, the southeast inland area is once again the area with the highest MAE, 
also in summer - this time around 2ºC. The remaining geographical areas range 
between 1.6 and 2ºC, although in winter the area with MAE of 2ºC has a wider 
extension. 



10 

As regards the seasonal 95th percentile of daily maximum and minimum 
temperatures (Fig. 5b and 5c),  the highest temporal correlation is around 0.8 in 
autumn and spring for maximum temperature and around 0.7 in winter for minimum 
temperature. Summer shows a low correlation (0.4) in the eastern Peninsula for both 
maximum and minimum temperatures.  

 

5 Discussion 

5.1 Advantages and limitations 

The methodology presented in this study, as in other statistical approaches, shows 
disadvantages compared to dynamic downscaling: (1) historical observations of the 
studied variables are needed; (2) they have possible spatial or inter-variable 
inconsistencies; and (3) there may be a possible problem of non-stationarity in the 
relationships between predictors and predictands particularly due to weak physical 
linkages. 

The main advantages of the statistical approaches are two. The first is the low 
computational cost, which allows the downscaling of many GCM outputs and several 
greenhouse gas emission scenarios in order to quantify uncertainties (Van der Linden 
and Mitchell 2009). The second is that specific information is provided for point 
locations with observations, and in these observations the microclimatic features of 
these points are implicit. This local detail is relevant as the same future climate may 
bring changes with respect to the current climate which could be quite different for 
points which are a few km apart. This supposition has been confirmed with the results 
obtained when local future climate scenarios are produced using this methodology. 
Dynamic approaches typically provide spatial resolutions of up to 25 km, which are 
still insufficient to resolve topography with enough detail and to show differences in 
the projected changes for points located close together.  

Regarding this particular statistical approach, it presents good verification results 
that are consistent with other studies when comparisons with other downscaling 
methods are considered (Goodess et al 2011, Brunet et al. 2008;Van der Linden and 
Mitchell 2009). 

In our opinion, these good verification results are due to some particular 
characteristics of this methodology: (1) predictors selection is based on theoretical 
considerations, trying to reflect the physical linkages between predictors and 
predictands, which to some extent reduces the stationarity problem; (2) it operates at 
the maximum spatial and temporal resolution offered by GCMs; (3) it considers the 
full range of data variability (we are not, for example, working with principal 
components); and (4) it performs linear analysis on the population of analogues, which 
reduces to a large extent the non-linearity of the relationships between predictors and 
predictands (see 3.3.1). 

It should be mentioned that, though analogue methods ensure to some extent spatial 
and inter-variable consistency, the second step performed here could reduce this 
consistency. 

As regards limitations, poorer results have been highlighted in the simulation of 
precipitation in autumn in the Mediterranean area, and for this variable on a daily 
timescale (although in general the monthly and seasonal scales are well simulated). 
This limitation may be associated with the insufficient spatial and temporal resolution 
used (i.e., that offered by GCMs), as they cannot resolve atmospheric structures which 
are small in size and/or have a short life cycle, such as the convective structures 
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responsible for heavy precipitations in Spain, especially in Mediterranean areas in 
autumn. 

 

5.2 Precipitation simulation 

Regarding the methodology (see 3.3.2), the second step for precipitation includes a 
pooling and ranking of the n×m precipitation amounts corresponding to each group of 
m problem days (with n analogous for each problem day). Proceeding this way, we 
obtain a probability distribution for the m final precipitation values (according to 
equation 5) which is more similar to the probability distribution of the n×m values of 
precipitation. To evaluate this, we used the Anderson-Darling test for the final 
precipitation estimates compared with the n×m amounts. The test gave a p-value for 
each group of m days of each station time-series, and all these p-values were averaged 
for each station. The final estimated precipitation (as well as observations) passes the 
Anderson-Darling test in almost all cases, with a significant p-value >0.05, while the 
preliminary estimates do not pass this test (Fig. 8 upper panel). 

We also performed the Anderson-Darling test for several simulations of 
precipitation compared with observed precipitation. Results show that the final 
estimated precipitation is closer to observed precipitation than both the precipitation of 
the first analogue and the preliminary estimate (Fig. 8 lower panel). 

The use of linear analysis for the second step of precipitation estimation is a subject 
of debate. For temperature, the second step consists of multiple regression, where the 
CDF shape of predictors is somewhat similar to the CDF shape of the predictand. In 
the case of precipitation, for a suitable multiple regression we need to find some 
predictors whose probability distribution has a similar shape (Bürguer, 1996). 
However, physically linked predictors (mainly moisture and instability) have very 
different probability distributions compared to precipitation, and thus linear 
relationships can not really be identified. 

Although the preliminary precipitation estimates obtained by averaging the 
analogues precipitation amounts provide good results for mean values, they 
underestimate both the number of dry days and the heavy rainfall amounts. Thus the 
aim of the probabilistic approach is to obtain precipitation time-series that properly 
represent the characteristics of the precipitation regime.  

Daily precipitation simulated by numerical models generally has very high MAE in 
comparison with other variables (Hamill 1999; McBride and Ebert 2000), thus some 
authors use verification methods such as Ranked Probability Scores (Hersbach 2000; 
Weigel et al. 2006). In this study, however, we have focused on verification of daily 
precipitation on rainy days, it is thus necessary to compare the PDFs of observed and 
simulated daily precipitation. In this respect, two non-parametric tests were performed, 
the Kolmogorov-Smirnov test with a bootstrap treatment (KS; Marsaglia et al. 2003, 
Sekhon 2010), and the Anderson-Darling test (Scholz and Stephens 1987). These tests 
showed that in general the distribution of simulated precipitation is not significantly 
different from that observed (p-value > 0.05). The results are similar for every month, 
with slight advantages for winter months in comparison to summer (Fig. 9). 

The simulated daily precipitation presents a substantial MAE and BIAS for autumn 
in areas with a Mediterranean climate influence, with a clear underestimation of 
precipitation (Fig. 3 and 4). This is probably due to the difficulty found in the realistic 
simulation of deep convection, which is typical of the Mediterranean (Lazier et al. 
2001; Herrmann 2008). This convection produces very intense precipitation due to 
persistent convergences of humidity and to the orthographic characteristics of the 
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eastern peninsular coast (Gibergans et al. 1995; Chastagnaret and Gil-Olcina 2006). 
Given the synoptic resolution of the GCMs (in general around 2 degrees), it is difficult 
to capture with precision such mesoscale phenomena; the availability of higher spatial 
resolutions would allow consideration of other physical predictors in order to improve 
results – for example, in operational forecasting the convergence of humidity is often 
used (Jansa et al. 2000). 

Future improvements of the methodology for precipitation would be desirable. The 
inclusion of other physical forcings (humidity and instability) should be tested. The 
effectiveness of this inclusion will probably be related to an increase in GCM 
resolution 

We have tested the inclusion of humidity as an additional predictor for the second 
step using different approaches, but so far verification results did not improve 
significantly. In addition, GCMs currently have problems simulating moisture (Hu et 
al. 2005; John and Soden 2007), partly due to low spatial resolution (Räisänen 2007). 
Therefore we decided not to include humidity in the final version of the methodology. 
Nevertheless, we consider that there are physical links between one day’s humidity 
field and its synoptic configuration (related to air trajectories, temperature, etc.). 

 

5.3 Daily temperature and data accuracy 

Initially, maximum and minimum temperatures were simulated from the ERA40 
atmospheric configuration at 00Z. This gave larger MAE for maximum temperature 
than for minimum (2.0°C versus 1.8°C). The reason seemed to be that 00Z 
information allows good simulation of minimum temperature (which usually occurs 
around 05Z in this area) but the use of 12Z information is more suitable for maximum 
temperature (which usually occurs around 14Z). Thus the temporal resolution of the 
predictors is important in order to minimise errors in simulating  temperature. 

However, since for many climate models 12Z information is not available, we 
decided to use the average of the 00Z and 24Z (00Z of next day) to simulate  
maximum temperature. This reduced MAE to similar values as obtained for minimum 
temperature, around 1.8 °C (Fig. 7).   

The recording precision of temperature observations also clearly affects the mean 
absolute error of the simulation. If, for example, the MAE obtained averaging over all 
the stations (many of which show precision of 1ºC) is compared to the results 
averaging over only those stations with good precision (<0.5ºC), the MAE can be 
reduced by 3 to 5 tenths of a degree (Fig. 10). For this comparison, we have analysed 
stations with at least 60% of the series with good precision (295 stations), and those 
with at least 90% of the series with good precision (only 22 stations).  

 

5.4 Method of verification and temporal evolution 

In order to achieve the effect of cross-validation, the methodology includes an “auto-
restriction” when simulating past climate: in the first step, the 5 previous days and the 
5 subsequent days of the problem day are excluded from the group from which the 
most analogous days have been selected. However, it is necessary to prove that the 
methodology also allows for adequate simulation of a climatic period “training” on a 
different period (a pure cross-validation scheme, from here on referred to as “Cross”). 
In this respect, Figure 11 shows that the “auto-restriction” gives verification results 
similar to those obtained when simulating half of the data with the corresponding other 
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half (Cross); the periods used for this test are 1958-1974 (period 1) and 1975-2000 
(period 2).  

Note that the “auto-restriction” method gives a MAE which is slightly lower than 
for the Cross method, owing to the fact that the selection of analogues is more 
effective the longer the “training” period used.  

Another relevant aspect considered in Figure 11 is the capacity to adequately 
simulate one period from another. That is to say, it is possible to simulate a warmer 
and slightly drier period (1975-2000) despite training on a relatively cold and wet 
period (1958-1974), and vice-versa (Brunet et al. 2001; Lopez-Bustins et al. 2008). 
Thus it is expected that the method described in this paper should be able to 
adequately simulate anticipated climate changes.  

Good performance in the simulation of climate evolution can also be analysed using 
the Pearson correlation of time series of seasonal precipitation and temperature. In this 
respect, it has been estimated that the median correlation for seasonal precipitation is 
R = 0.7 (Fig. 12), whereas for temperature it is R = 0.8 (Fig. 13).  

The area which shows most skilful simulation of the temporal evolution of 
precipitation is the southwest peninsula, particularly in winter, with a correlation of R 
> 0.9; this is probably due to the fact that the origin of precipitation in this area is 
largely frontal. In contrast, lower correlations are obtained in the southeast peninsula, 
the Ebro Valley and the Balearic Islands, especially in summer (R < 0.3), owing to the 
scarcity of precipitation (Fig. 12a). Figure 12b shows the observed and simulated time 
series in winter and summer for a station with R equal to the median of all the stations, 
and with data spanning at least 30 years. 

As regards the temporal simulation of temperature, the spatial distribution of the 
correlations is more homogeneous, especially in spring. The seasons showing poorer 
simulation are summer and winter in the southeast and southwest respectively, with 
correlations lower than 0.6 (Fig. 13). Figure 13b shows the observed and simulated 
seasonal time series for a station with R equal to the median of all the stations, and 
with at least 30 years of data. 

It can also be seen that seasonal simulation of the 95th percentile of precipitation 
and temperature gives a temporal correlation with observations (Fig. 6) which is 
spatially coherent with that for the seasonal averages (Fig. 12 and 13). 

 

6 Conclusions 

This paper presents a two step statistical downscaling methodology which allows  
good simulation of past climate on the Spanish peninsula and the Balearic Islands on a 
local scale, based on ERA40 reanalysis data. The mean absolute error (MAE) for daily 
precipitation is lower than for two reference simulations (persistence and climatology), 
whereas for minimum and maximum daily temperature, MAE is around 1.8ºC – 
however, MAE for temperature is between 3 and 5 tenths of ºC lower if only those 
stations showing good recording precision (<0.5ºC) are considered.  

The bias obtained was generally insignificant, except for autumn precipitation in 
Mediterranean areas. The reason for this arises from the difficulty in simulating deep 
convection, which is typical of the Mediterranean, owing to the spatial resolution used 
(i.e., that offered by the GCMs) Despite this, the PDFs of simulated daily precipitation 
are not significantly different from observed, at least according to the Kolmogorov-
Smirnov (p-value = 0.4, with bootstraping) and Anderson-Darling (p-value = 0.3) 
tests. 
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Finally, the temporal evolution of climate is also well simulated, both for 
precipitation (with a correlation of about R = 0.7) and for temperature (with a 
correlation of about R = 0.8).  It is also shown that the method is capable of 
satisfactorily simulating the period 1975-2000 when trained on the period 1958-1974, 
and vice-versa. 
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Appendix 

An example will help to understand the proposed method and its justification (see 
point 3.3.2). To simplify, in this example m=4, n=4, and all the analogous days will 
have the same probability πij=1/4. Table A.1 shows the supposed observed 
precipitation (ρij) of each analogous day (aij), and the preliminary precipitation 
estimate (Eq. 4). 

Within these 4 problem days together, there would be a probability of one day with 
precipitation over 50 mm of 25% (for x1) + 25% (for x2) + 50% (for x4), so it is 
expected that one day of those 4 has a precipitation over 50 mm. But no preliminary 
precipitation estimate reaches that amount, due to smoothing in the average. Likewise, 
the probability of no rain would be 50% (for x1) + 50% (for x2) + 100% (for x3), so it 
is expected that two of those 4 days are dry, while the preliminary precipitation 
estimate suggested only one, again due to averaging and smoothing. 

To solve this problem, we pooled all n·m analogues (n analogues for each of all m 
days in the month) to construct a sample distribution, and obtained the final 
precipitation amount estimation from this joint probability distribution (Eq. 5). Sorting 
the m·n observed precipitation amounts (ρij), the m final precipitation amounts are 
obtained by averaging each of the m groups of n sorted analogues. This way, one day 
over 50 mm and two dry days are obtained, and these final precipitation amounts are 
assigned to each of the problem days according to their preliminary precipitation 
amount estimates (see table A.2). 

The final precipitation distribution is much more similar to the m·n analogue 
observed precipitation distribution than the preliminary precipitation distribution was. 
And the extremes (high values and dry days) of that m·n analogue distribution are 
much better represented. 
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Tables  

 

Table A.1. Preliminary precipitation estimates (Eq. 4) using m=4 problem days and n=4 
analogous days 

 

Problem day 

 (xi) 

Analogous 
days 

 (aij) 

Analogue 
probability 

(πij) 

Analogue 
precipitation 

(ρij) 

Preliminary 
precipitation 

(pi) 

x1 a11 0.25 0 13.75 

 a12 0.25 50  

 a13 0.25 0  

 a14 0.25 5  

x2 a21 0.25 0 16 

 a22 0.25 0  

 a23 0.25 4  

 a24 0.25 60  

x3 a31 0.25 0 0 

 a32 0.25 0  

 a33 0.25 0  

 a34 0.25 0  

x4 a41 0.25 70 36.25 

 a42 0.25 60  

 a43 0.25 10  

 a44 0.25 5  
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Table A.2. Final precipitation estimates (Eq. 5) using the n×m analogues of Table A.1, sorted 
by analogue precipitation (ρij). 

 

Analogous 
days  

(aij)  

Analogue 
probability 

(πij) 

Analogue 
precipitation 

(ρij) 

Final 
precipitation 

(ph') 

Assigned to 
problem day 

(xh) 

a41 0.25 70 60 x4 

a24 0.25 60   

a42 0.25 60   

a12 0.25 50   

a43 0.25 10 6 x2 

a14 0.25 5   

a44 0.25 5   

a23 0.25 4   

a11 0.25 0 0 x1 

a13 0.25 0   

a21 0.25 0   

a22 0.25 0   

a31 0.25 0 0 x3 

a32 0.25 0   

a33 0.25 0   

a34 0.25 0   
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Figure captions  

Fig. 1 Meteorological stations used for this study; a) precipitation stations, b) temperature stations. 

Fig. 2 Atmospheric windows and grid-point weighting for each atmospheric level. 

Fig. 3 Box plots of RPS and MAE for daily precipitation, for all stations, compared with two reference 
simulations: climatology and persistence. 

Fig. 4 Spatial distribution of BIAS for precipitation: a) absolute BIAS, b) relative BIAS.  

Fig. 5 Spatial distribution of the Pearson correlation for simulated and observed seasonal 95th  percentile 
time series, for: a) daily precipitation, b) daily maximum temperature, and c) daily minimum 
temperature.  

Fig. 6 Box plots for BIAS and daily MAE for maximum and minimum temperature for all stations.  

Fig. 7 Spatial distribution of BIAS and daily MAE for maximum and minimum temperature:  a) BIAS 
of maximum temperature, b) BIAS of minimum temperature, c) MAE of maximum temperature, d) 
MAE of minimum temperature. 

Fig. 8 a) Box plots of mean P-values, for all stations, for the Anderson-Darling test on the 
indistinguishability of the simulated m×n values of rainfall (for each of m = 30 problem days, with n = 
30 analogues for each one), compared to the m: observed values, preliminary and final estimated values 
of precipitation. b) The same test for comparing observed values with several simulations: value of the 
first analogue, preliminary and final precipitation estimates. For each station, the mean P-value is the 
average for every calculated P-value for each m-days period. 

Fig. 9 Box plot of P-values, for all stations, for two non-parametric tests of the indistinguishability 
between the observed and simulated probability distribution functions, for precipitation amounts on wet 
days: a) Kolmogorov-Smirnov test with bootstraping, and b) Anderson-Darling test.  

Fig. 10 Box plots of monthly MAE according to data recording precision: a) MAE for daily maximum 
temperature for all stations (black) and for those with intermediate precision (at least 60% of the data 
with precision higher than 0.5ºC) (blue); b) The same as a) but for better precision (at least 90% of the 
data with precision higher than 0.5ºC (green); c) and d) The same as a) and b) respectively, but for 
minimum temperature.  

Fig. 11 Box plots of the comparison between BIAS and MAE according to two verification methods 
(original and Cross), and two periods (Period 1 and Period 2), for all stations: a) BIAS of precipitation; 
b) BIAS of maximum temperature;  c) MAE of monthly precipitation; d) MAE of daily maximum 
temperature.  

Fig. 12 Correlation of simulated and observed time series of seasonal precipitation: a) Spatial 
distribution of the correlation for the four seasons; b) seasonal precipitation (winter and summer) time 
series for a station with correlation equal to the median (R = 0.7; station is Requejada Reservoir, 
AEMET code 2232),. 

Fig. 13 Correlation of simulated and observed time series for seasonal maximum temperature: a) spatial 
distribution of the correlation for the 4 seasons;  b) seasonal maximum temperature time series for a 
station with a correlation equal to the median (R = 0.8; station is Almazán, AEMET code 2045 
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Figure captions  

Fig. 1 Meteorological stations used for this study; a) precipitation stations, b) temperature stations. 
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Fig. 2 Atmospheric windows and grid-point weighting for each atmospheric level. 
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Fig. 3 Box plots of RPS and MAE for daily precipitation, for all stations, compared with two reference 
simulations: climatology and persistence. 
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Fig. 4 Spatial distribution of BIAS for precipitation: a) absolute BIAS, b) relative BIAS.  
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Fig. 5 Spatial distribution of the Pearson correlation for simulated and observed seasonal 95th  percentile 
time series, for: a) daily precipitation, b) daily maximum temperature, and c) daily minimum 
temperature.  



27 

Fig. 6 Box plots for BIAS and daily MAE for maximum and minimum temperature for all stations.  
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Fig. 7 Spatial distribution of BIAS and daily MAE for maximum and minimum temperature:  a) BIAS 
of maximum temperature, b) BIAS of minimum temperature, c) MAE of maximum temperature, d) 
MAE of minimum temperature. 
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Fig. 8 a) Box plots of mean P-values, for all stations, for the Anderson-Darling test on the 
indistinguishability of the simulated m×n values of rainfall (for each of m = 30 problem days, with n = 
30 analogues for each one), compared to the m: observed values, preliminary and final estimated values 
of precipitation. b) The same test for comparing observed values with several simulations: value of the 
first analogue, preliminary and final precipitation estimates. For each station, the mean P-value is the 
average for every calculated P-value for each m-days period. 
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Fig. 9 Box plot of P-values, for all stations, for two non-parametric tests of the indistinguishability 
between the observed and simulated probability distribution functions, for precipitation amounts on wet 
days: a) Kolmogorov-Smirnov test with bootstraping, and b) Anderson-Darling test.  
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Fig. 10 Box plots of monthly MAE according to data recording precision: a) MAE for daily maximum 
temperature for all stations (black) and for those with intermediate precision (at least 60% of the data 
with precision higher than 0.5ºC) (blue); b) The same as a) but for better precision (at least 90% of the 
data with precision higher than 0.5ºC (green); c) and d) The same as a) and b) respectively, but for 
minimum temperature.  
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Fig. 11 Box plots of the comparison between BIAS and MAE according to two verification methods 
(original and Cross), and two periods (Period 1 and Period 2), for all stations: a) BIAS of precipitation; 
b) BIAS of maximum temperature;  c) MAE of monthly precipitation; d) MAE of daily maximum 
temperature.  
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Fig. 12 Correlation of simulated and observed time series of seasonal precipitation: a) Spatial 
distribution of the correlation for the four seasons; b) seasonal precipitation (winter and summer) time 
series for a station with correlation equal to the median (R = 0.7; station is Requejada Reservoir, 
AEMET code 2232),. 
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Fig. 13 Correlation of simulated and observed time series for seasonal maximum temperature: a) spatial 
distribution of the correlation for the 4 seasons;  b) seasonal maximum temperature time series for a 
station with a correlation equal to the median (R = 0.8; station is Almazán, AEMET code 2045 
 
 


